Approximating derivatives using least-squares best-fitting polynomials

1. A noisy sensor is reading speed at a rate of once every five seconds, and the reading is in meters per second. The readings are as follows:

$$
0,0,0,0,-0.35,1.84,1.56,-1.12,-4.70,2.95,3.77,1.97,5.81,8.11,10.62,11.88,17.45
$$

Use the five-point approximation shown in the course slides:

1. For best-fitting least-squares linear polynomials:

$$
\begin{aligned}
& a_{1}=-0.2 y_{n-4}-0.1 y_{n-3}+0.1 y_{n-1}+0.2 y_{n} \\
& a_{0}=-0.2 y_{n-4}+0.2 y_{n-2}+0.4 y_{n-1}+0.6 y_{n}
\end{aligned}
$$

2. For best-fitting least-squares linear polynomials:

$$
\begin{aligned}
& a_{2}=\left(2 y_{n-4}-y_{n-3}-2 y_{n-2}-y_{n-1}+2 y_{n}\right) / 14 \\
& a_{1}=\left(26 y_{n-4}-27 y_{n-3}-40 y_{n-2}-13 y_{n-1}+54 y_{n}\right) / 70 \\
& a_{0}=\left(3 y_{n-4}-5 y_{n-3}-3 y_{n-2}+9 y_{n-1}+31 y_{n}\right) / 35
\end{aligned}
$$

Use these to approximate the derivative at each point starting with the fifth.
Answer: Starting with the $5^{\text {th }}$ point, assuming all previous integrals are zero, and rounding to two decimal places for the quadratic polynomial:
$-0.014, \quad 0.0666,0.0992,-0.0066,-0.2332,-0.0808,0.1698,0.293, \quad 0.4008,0.2472,0.3968,0.4926,0.541$
$-0.0540,0.2969,0.2123,-0.4140,-1.0298, \quad 0.7741,1.2115,0.1061,-0.1843,0.7386,0.8014,0.2097,0.8433$
2. Plot the points with noise, and then plot the least-squares best-fitting polynomials that are used to estimate the derivatives at the last point assuming the first noisy signal was taken at time $t=0$.

Answer:

3. With as much noise as was introduced into the data in Question 1, would it make more sense, or less sense, to use more points in finding the best-fitting least-squares polynomials?

Answer: The errors introduced into the data is quite significant, so more points would definitely give a much better approximation by eliminating some of that error.
4. Using the quadratic polynomial, estimate the derivative one time-step into the future.

Answer: $2 a_{2}+a_{1}=2 \times 0.377857142857143+4.216428571428570=4.972142857142856$

